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The propert'ies of high frequency capillary waves generated by steep gravity waves on 
deep water have been measured with a high resolution laser optical slope gauge. The 
results have been compared with the steady theory of Longuet-Higgins (1963). Good 
qualit,ative agreement is obtained. However, the quantitative predictions of the 
capillary wave slopes cannot be verified by the data because the theory requires 
knowledge of an idealized quantity - the crest curvature of the gravity wave in the 
absence of surface tension - which cannot be measured experimentally. 

1. Introduction 
The phenomenon associated with a deep-water wave as it steepens to a stage near 

breaking presents a challenging problem in both theoretical and experimental fluid 
mechanics. The first publication on the subject was by Stokes (1880), who presented 
a theoretical argument stating that the limiting wave form of a steady, progressive, 
symmetric gravity wave in the absence of surface tension is one with a corner at  the 
crest, subtending an angle of 120". Later numerical work by Michell(l893) established 
that the limiting wave form is attained at  a ratio of wave height t o  wavelength of 0.143. 
For nearly a century afterwards, theoretical efforts in the subject were confined to 
at,teinpts to improve the mathematical representation of the near limiting wave. 

In  a physical situation, the matter is complicated by the presence of surface tension 
and viscosity. Partly because of this, but mostly because of the highly transient 
nature of the phenomenon itself, the results in the experimental area were even more 
limited. In fact, until quite recently (Cox 1958; JSiller 1972) there have been no reports 
of experiments with sufficient accuracy to provide any quantitative information. Cox 
( 1958), in an experimental investigation aimed mainly towards understanding the 
effects of wind on waves, reported the presence of high frequency capillary waves 
near the crest of a steep gravity wave even in the absence of wind. This observation 
apparently motivated Longuet-Higgins (1963) to examine theoretically the effects 
of surface tension on a steep gravity wave. He argued that while the effects of surface 
tension may be small in an overall sense when compared with the effect of gravity for 
waves that are sufficiently long (hence the name gravity wave), they can still be 
locally important near the crest of a steep gravity wave because of the large curvature 
at that point. Based on this concept, he performed a perturbation expansion in which 
surface tension was taken to be the small parameter, and the steady, nonlinear gravity 
wave solution near the Stokes limiting wave form was used as the zeroth-order solution 
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FIGURE 1. Experimental configuration. 

to which the surface tension induced corrections were calculated. He found that the 
theoretical results compared favourably with the experimental observations of Cox 
in a qualitative sense. Because of the irregularities in Cox's data, the quantitative 
validity of the theory was not conclusively demonstrated. 

Several more theoretical investigations into the interaction between gravity waves 
and capillary waves followed the analysis of Longuet-Higgins (1963)) notably those 
by Crapper (1970), McGoldrick (1972), Benney (1976) and Ferguson, Saffman & Yuen 
(1978). Results from these studies were not in total agreement, presumably because 
of the fact that each analysis had treated a different set of physical conditions (see the 
discussion in Ferguson et al. 1978). 

In  this paper, we present a set of carefully controlled experiments to provide quanti- 
tative information on the behaviour of gravity waves (which are sufficiently long) for 
a range of values of wave slopes in the absence of wind. The high frequency capillary 
waves present on the gravity waves are resolved by a laser optical slope gauge. In  5 2, 
a brief description of the experimental facilities and the laser slope gauge is given. In 
$3,  the results of the measurements are presented and discussed. In  $4, comparison 
is made with the theory of Longuet-Higgins (1963) which is most appropriate for our 
experimental Conditions. Finally, a summary of our findings is presented in $5. 

2. Experimental apparatus 
The experimental apparatus consists of a water tank in which deep-water gravity 

waves are steadilygenerated, a laser slopegauge whichmeasures the slope of the gravity 
and capillary waves, and a tape recorder and oscillograph system which records the 
data. A sketch of the system is shown in figure 1. 



High frequency capillary waves on steep gravity waves 

c c 
I 
I 

Detector 
Filter 

38 mm 

Lens 

1 

Lens 

L : 
.. 

37.1 mm 

&ng,c Water surface 

Prism 

25 4 cm 

403 

cm 

FIGURE 2. Optical schematics of  laser slope gauge. 

The water tank is 366 cm long, 30.5 cm deep and 61 cm wide. Surface gravity waves 
of varied and controlled jfrequency (range = 3 Hz-6 Hz) and amplitude (range = 

0 cm-3 em) are generated by a flapper plate driven by a variable speed motor. These 
waves propagate down the tank until they are absorbed by the inclined metallic 
plate (estimated reflexion less than 5 yo). 

The prime diagnostic is a laser slope gauge which is capable of measuring the 
dope changes of the high frequency capillary waves without probe interference. The 
principle of operation for this device is straightforward. A laser beam is inserted into 
the water, reflected upward normal to the surface which refracts it in a direction 
dependent upon the slope of the water surface. The refracted beam is directed by 
a lens to a position on the detector dependent only on the refracted beam angle. The 
magnitudes of the electrical outputs from the detector are dependent upon the incident 
light spot position and provide a measure of the water slope. 

An optical schematic of the gauge is shown in figure 2. All of the optical components 
are mounted in a single rigid structure to maintain optical alignment. The light source 
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is a helium-neon laser. The laser beam enters the water through a window at the 
bottom of a tube located 25 cm away from the point of measurement. The tube elimi- 
nates the effect of water surface orientation on the beam entrance angle. The beam is 
deflected horizontally and then up by two prisms. A small lens is cemented to the face 
of the second prism to focus the laser a t  the water surface. As the beam leaves the water 
it is refracted. A n  objective lens with a 34.5 mm aperture then focuses the beam on the 
detector. The detector is located in the focal plane of the objective lens so that the 
position where the laser beam intersects the detector surface depends only on the 
refraction angle and is independent, of where the beam enters the lens, hence insensitive 
to water height. The narrow band filter centred at 6328 A is used to  filter out ambient 
room light. The detector is continuous and sensitive in two dimensions. The calibrated 
electric output provides a quantitative measure of the wave slope in two dimensions. 
An integrator circuit provides a measure of the surface wave amplitude. Experiments 
have demonstrated that this laser slope gauge is responsive to frequencies up to 700Hz. 
It has a spatial resolution of 0.2 mm and a sensitivity of 0.01" change in slope. 

3. Results and discussion 
Returns of the laser slope gauge measurements were recorded on a magnetic tape 

and played onto an oscillograph in the form of time traces. An example of such an 
oscillograph output is given in figure 3. Time increases from left to right, so that the 
front of the wave is to the left-hand side. The lower trace in the figure marked 'ampli- 
tude' is the time integrated result of the slope gauge output, and it has been verified 
by comparison with conventional capacitance wave gauge records that it indeed 
represents a true record of the wave amplit,ude trace in time. 

The point at  which the slope trace crosses the line marked 0" gives the location of the 
crest of the wave, at  which point the slope is zero by definition. The skewness of the 
slope gauge output reflects the fact that the nonlinear gravity waves are more peaked 
at  the crest than at  the trough. The maxipum excursion of the slope output in both the 
positive and negative gives the maximum front and rear slopes, denoted by X+ and S-, 
respectively. 

The steepness of a gravity wave is often characterized by the value it has for ka, 
where k is the wavenumber and a is the amplitude of the wave. In  the present situation, 
we do noh have a direct measurement of the wavenumber or the wavelength, but only 
the frequency of the wave. In  the linear case, we know that the frequency and wave- 
number are related by the dispersion law 

u2 = gk. (3.11 

We acknowledge that for our case most of the waves are nonlinear, and therefore the 
dispersion relation (3 .1)  may not be valid. However, there is ample evidence that 
whereas the effects of the nonlinearity may be dynamically imporhant, the correction 
to the numerical value of w as a function of E is small (see Kinsman 1965). For this 
reason, we shall adopt the relation (3.1) in converting our frequency and amplitude 
measurements to  a value of ka, using the formula (in c.g.s. units): 

where T is the period in time of bhe wave. 
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FIGURE 3. Oscillograph output for a small but finite amplitude gravity wave train. 

A second example of the output is given in figure 4, in which high frequency capillary 
waves are seen near the crest a t  the front side of the gravity wave. This is typical for 
cases in which the gravity waves are sufficiently steep; in this case the value for ka is 
0.236 using the definition in (3.2), with S, = 0.485 and S- = 0.268. (Note that for the 
steady, progressive, symmetric Stokes limiting wave form, S, = S- = tan 30" = 0.577.) 
The fact that S, is much larger than sl in this case indicates that the waves shown ary 
highly asymmetrical, being much steeper in the front than in the rear. Since there has 
been no steady, asymmetric solution found, it, is inferred that these waves are also 
unsteady and possibly undergoing wave breaking. This may account for the high 
degree of irregularity shown in the wave records. The quality of this set of records is 
similar to that published by Cox (1958) which, although positively identifying the 
presence of capillary waves on the front side of the gravity waves, is too irregular 
and unrepeatable to allow quantitative information to be deduced from it. 

By making certain that the surface is clean and carefully selecting the wave 
frequencies to  avoid possible cross-wave resonances, we were able to generate a much 
more repeatable set of gravity waves for fairly large values of ka. As we have indicated 
above, measurements of these waves were taken at a location 1.219m from the wave 
paddle. It is hoped that this selection is far enough from the wave paddle to be relatively 
free of paddle induced flows, yet a t  a short. enough fetch to ensure that niodulational 
effects of the Benjamin & Feir type have not become significant (Benjamin & Feir 
1967; Benjamin 1967; Lake et al. 1977). As a result, the waves can be made extremely 
repeatable, as shown by the example in figure 5.  Of course, the mere fact that they 
are repeatable in time does not automatically guarantee that the waves are steady in 
space. Nevertheless, examination of t,he values of S, and 1'3- indicates that they are 
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FIGURE 4. Oscillograph output for a steep gravity wave train 
generating high frequency capillary waves. 

practically identical (provided that the value for S, is obtained by averaging out the 
high frequency oscillations caused by the presence of the capillary waves). This shows 
that the waves are symmetrical, and it is therefore reasonable to infer that they are 
steady. The ultimate determination of steadiness with our apparatus, of course, 
requires the use of two closely located slope gauges. This set of measurements is 
presently being pursued. 

All the data presented in the remainder of this paper are obtained from repeatable 
experiments such as those shown in figure 5. The values are taken from a single 
realization, but in view of the repeatability of the wave records, one would not be 
able to extract any more information by averaging or performing any other statistical 
techniques. 

In  order to resolve the high frequency capillary waves, we played back the signals 
recorded at  high speed. An example is shown in figure 6. The frequency of the capillary 
waves is obtained from the period between two successive peaks in the slope trace. 
The magnitude of the capillary waves, as measured by their slopes, is slightly more 
difficult to obtain. Since the capillary waves are superposed on the gravity waves, the 
slope measurements do not have a true zero from which we can deduce S, and S- as 
we did for the gravity waves. However, we are able to obtain a value for S, = tan 8, 
where 8 is defined as the total peak-to-peak excursion of the oscillation associated with 
capillary waves in degrees, as indicated in figure 6. In  the limit of the small slope, S, is 

t Preliminary results indicate that for cases measured, the capillary waves and the gravity 
waves are indeed steady on the time scale of the capillary waves. 
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FIGURE 5 .  Oscillograph output for a repeatable train of gravity waves 
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FIGURE 6. High speed tape recorder playback from which data were reduced. 
Gravity wave frequency, f = 4.21 Hz. 

expected to be the arithmetic mean of S, and S-. However, for larger values of the 
slopes, S, would be greater than the arithmetic mean because of the property of the 
tangent. It is true that S,, does contain contributions from the slope of the gravity 
waves, but i t  is deemed to be fair representation of the characteristic slope of the 
capillary waves to a good approximation. 

It should be recalled that in the analysis of Longuet-Higgins (1963), the gravity 
wave was characterized not by its value of ka but by the value of its crest curvatures 
in the absence of capillary waves, K ~ .  This idealized quantity cannot be obtained in an 
experiment, since surface tension (and hence capillary waves) is always present. The 
best approximation of such a value would be the crest curvature of the gravity wave in 
the presence of capillary waves. This is obtained by digitizing the slope record and 
numerically differentiating the slope record near the crest of the gravity wave (defined 
as the point of zero slope). Again, the dispersion relation must be invoked to convert 
a time differentiation to a spatial differentiation. The possible error introduced by the 
space-time interchange, however, should be small compared with the possible error 
associated with differentiation of the data, and the unknown contribution to curvature 
from the first capillary wave. To emphasize the fact that the resulting value is experi- 
mental, as opposed to the idealized crest curvature K~ (in the absence of surface tension) 
required in the Longuet-Higgins theory, we shall denote the former as ( K ~ ) ~ ~ ~ .  

In  the next section, we shall briefly summarize the essence of the Longuet-Higgins 
theory and compare its predictions with our experimental data. 
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4. Comparison with the theory’ of Longuet-Higgins 
The effects of surface tension in the equations of motion for water waves is to modify 

the dynamic free-surface boundary conditions by introducing an additional surface 
pressure term : 

3+&(Vq5)2+gz  at = ~ - T K ,  z = q(x,y,t), (4.1) 

where q5 is the velocity potential, V is the gradient operator, T is the surface tension 
coefficient, K is the local curvature of the free surface, andp is the surface pressure. For 
our purpose, p can be taken to be a constant and hence zero by choice. The rest of the 
deep-water wave equations remain unchanged: 

VZ$ = 0, --co < z < y(x, y,t), ( 4 4  

where (x, y) are horizontal co-ordinates and 2 is the vertical co-ordinate. 
The curvature K can be expressed in terms of the free surface ~ ( x ,  y, t )  as 

For one-dimensional infinitesimal waves, where 7 = a cos (kx - ot), K is simply 

K = - k2a cos (kx - wt) ,  (4.6) 

where a is the amplitude and k is the magnitude of the wavenumber. This leads to the 
linearized dispersion relation w = (gk + Tk3)*. (4.7) 

The ratio of the effects of surface tension to gravity can be expressed by the dimension- 
less quantity 

5 1 corresponds to capillary waves, and r7 < 1 corresponds to gravity waves. For 
water, T is taken to be 74 c.g.s. units. This means that r7 < 0.01 for waves longer than 
18 cm, and 5 > 100 for waves shorter than 0.18 cm; these values conveniently define 
the gravity and capillary wave regimes respectively. In  between, both gravity and 
capillarity play a role; they become of roughly equal importance for waves with 
wavelengths about 1-7 cm. These waves are sometimes known as Wilton’s ripples, 
since it was Wilton (1915) who first gave a series representation for the steady-state 
finite amplitude solutions. 

Longuet-Higgins (1963) was concerned with waves that are much longer than 
18 cm and are pure gravity waves according to the foregoing discussion. Surface tension 
is expected to be important only locally near the crest. Thus an expamion of Wilton’s 
type which requires 5 - O( 1)  is not suitable. The basic idea in the analysis of Longuet- 
Higgins (1963) was as follows: when the gravity wave amplitude increases, the curva- 
ture a t  the crest increases rapidly; since the surface tension effect is proportional to the  

5 = Tk2/g; (4.8) 
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local curvature, it must become locally important at the crest before the gravity wave 
achieves its limiting profile which has an infinite crest curvature corresponding to 
the sharp corner of 120". The proposed expansion was therefore: 

(4.9) $ = ( y o )  + p ,  7 = $0) + p ,  

where and @) are O ( 3 )  compared with $(O) and ~ ( 0 ) .  No limitation is imposed on the 
steepness of the gravity waves. Thus #"and q(0)simply represent the pure gravity wave, 
and the region of particular interest is when the wave approaches the Stokes limiting 
profile. 

Substituting (4.9) into the governing equations (4.1)-(4.4) gives, to leading order, 
the pure gravity wave equations for #O) and q ( O ) ,  which are identical to the set of 
equations (4.1)-(4.4) when T is set to zero. To next order, we obtain the equations for 

v-2p = 0, -a < z < q@), (4.10) #l) and q(l) : 

(4.13) 

These equations describe forced capillary waves riding on a variable stream induced 
by the gravity wave, the forcing being due to the curvature of the gravity wave. 
Longuet-Higgins ( 1963) then introduced the following additional assumptions : 

( a )  The gravity wave is steady, so that Q ( O )  and q ( O )  are functions o fx  - Ct. In fact, an 
expression given by Davies (1951) was used for the description of the near limiting 
gravity wave around the crest. 

( b )  The capillary waves are small enough that the equations can be linearized 
about 0 ' 0 )  and $O) .  

(c) The action of viscosity is such that i t  can be neglected for the capillary wave 
generation process, but large enough that the capillary waves, once generated, are 
damped out, in one gravity wave wavelength. 

Under these provisos Longuet-Higgins was able to solve the resulting equations by 
conformal mapping and Fourier transformation to arrive at  the following conclusions : 

(i) Capillary waves are generated at  the crest of a sufficiently steep gravity wave. 
The steepness of the first (or typical) capillary wave is an extremely sensitive function 
of K ~ ,  which is the crest curvatcure of the zeroth-order gravity wave solution: 

?, 

(ka)lst cap A $71 e-As (4.14) 

where = g / ( 6 T K t ) .  (4.15) 

(ii) The frequency of the capillary waves is determined by the condition that the 
phase velocity of the capillary wave Ccap must be equal to  the sum of Cgrav and the 
gravity wave induced tangential particle velocity, i.e. Ccap = Cgrav + ugrav, where ugrav 

depends on the frequency ka and the gravity wave, and is a function of position along 
the gravity wave. 
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(iii) The capillary waves are found ahead of the gravity waves in the direction of 
wave propagation. This is because the capillary wave group velocity Cg(cap) is larger 
than the phase velocity Ccap [in fact, Cg(cap) = $Ccap]. As a consequence, the pattern of 
the capillary waves generated must propagate forward relative to the gravity wave 
crest, radiating energy towards the front. 

(iv) Internal viscous dissipation is considered to lead to a damping of the capillary 
wave energy at  a time exponential rate of vk:,,, where v is the kinematic viscesity and 
kcap is the capillary wavenumber. According to  assumption ( c ) ,  this must be adequate 
to effectively damp out the capillary waves before they can reach the next gravity wave 
crest. 

Longuet-Higgins ( 1963) compared these predictions with one experimental record 
published by Cox (1958). It was found that by taking the measured crest curvature as 
( K ~ ) ~ ~ ~ ,  the steepness of the capillary waves is underpredicted by the theory. No mention 
was made of the capillary wave frequencies, presumably because the records do not 
provide sufficient resolution to determine them accurately. Furthermore, the experi- 
mental record published, in which 13 gravity waves are shown, exhibits very large 
and irregular scatter, and no reliable quantitative information can be deduced from it. 
In  that sense, one can only conclude that the comparison reveals no obvious contra- 
diction between theory and experiment. 

We now compare these theoretical predictions with our experimental data. We first 
examine the prediction of the capillary wave frequencies as a function of position 
along the gravity wave. The particle velocity induced by gravity waves is calculated 
by using equation (4.4) in Longuet-Higgins’ paper, which is a consequence of the 
analytical expression for approximating gravity wave shape near the crest for near 
limiting wave forms given by Davies (1951). The results are shown in figure 7, 
which shows the capillary wave frequencies as a function of n, defined as the index of 
number of capillary waves from the gravity wave crest. As expected, good qualitative 
agreement is found near the crest of the gravity wave. The use of this measure 
(originally introduced by Longuet-Higgins) makes the comparison sensitive to the 
frequency and wavelength of the calculated capillary waves, since an error in the 
calculation will be cumulative as n increases. In view of this, the overall quantitative 
agreement, as shown in figure 7, should be considered satisfactory for the two values 
of gravity wave frequencies: 3.55Hz and 4-21Hz. The poor agreement of the 
5.26 Hz case is expected, since for this case the gravity wave is not much longer than 
the capillary waves, as required by the theory. The relatively low frequency of the 
capillary waves also causes them to dissipate slower. In  fact, the capillary waves cover 
the entire length of the gravity wave in this case, violating the third assumption of 
the Longuet-Higgins theory. 

In  order to test the validity of the theoretical prediction concerning the magnitude 
of slopes of the capillary waves, we have to obtain a value for K ~ ,  which is the crest 
curvature of the gravity wave in the absence of capillary waves. As we have indicated 
in the previous section, K~ is not obtainable from experimental measurements because 
of the fact that surface tension and hence capillary waves are always present. 
A logical approximation to K~ is ( K ~ ) ~ ~ ~ ,  which is the experimentally measured crest 
curvature. The use of such a value to calculate the predicted capillary wave slopes, 
however, yields ( k a ) c a p  several orders of magnitude lower than the measured capillary 
wave slopes. For example, take the case where the gravity wave frequency is 3.55 Hz; 
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FIGURE 7. The distribution of high frequency capillary waves on a steep gravity wave. Capillary 
wave frequencyf,,, 0s. number of capillary wavelengths from gravity wave crest n for various 
values of gravity wave frequencyf. A ,  3.55 H z ;  0,  4.21 Hz; v, 5.26 Hz; ---, Longuet-Higgins 
(1963) theory. 

the measured crest curvature is 0.356/cm, and use of this value in (4.14) shows (ka),,, 
to be 5.6 x 

We note that because of the sensitivity of the dependence of (ka),,, on K ~ ,  a small 
reduction in the value of KO may lead to an enormous difference in the calculated value 
of (ka)l , t .  For this example, we note that in order to yield the value of (ka),, = 0.07, 
the value required for K~ is 0.806/cm. In  fact, the value of KO required to achieve agree- 
ment between the calculated and measured value of (ka),, is typically about twice that 
of the measured value of the crest curvature. It is therefore unlikely that this systematic 
discrepancy can be attributed entirely to  the uncertainties in the measurement of 
crest curvature as we have mentioned above. 

Actually, in the model proposed by Longuet-Higgins, the capillary waves are 
generated directly by the ‘excess ’ pressure associated with the large crest curvature. 
It thus follows that the creation of these capillary waves drains the energy stored in 
the curvature of the gravity wave crest and reduces the value of the crest curvature. 
Since we are certain that our measurements are not taken a t  the instant of the first 
generation of capillary waves, there is reason to suspect that the measured crest curva- 
ture in the presence of the capillary waves should be less than the value which was 
‘responsible’ for the presence of the capillary waves in the first place. It is therefore 

while the measured value of the first capillary wave slope is 0.07. 
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FIGURE 8. Dissipation of high frequency capillary waves on a steep gravity wave. Capillary 
wave slope (ka),,, us. number of capillary wavelengths from gravity wave crest n for various 
values of gravity wave frequency f. A, 3-55 Hz; , 4.21 Hz; y ,  5-26 Hz; - , Longuet- 
Higgins (1963) dissipation model. The theoretical curves have been chosen to agree with the 
data for vt = 1. 

proposed that the present discrepancy, although substantial in terms of the magnitude 
of the capillary wave slopes, may be mainly caused by the slight mismatch of the 
theoretical assumptions and the actual experimental conditions. After all, the theory 
had been based on an ideal situation. 

Finally, we can test the validity of the assumption in Longuet-Higgins' model that 
the effect of dissipation of the capillary waves is an exponential time-decay of wave 
amplitude given by uk&, where u is the kinematic viscosity and k,,, is the capillary 
wavenumber. The results of this comparison are shown in figure 8. Since the magnitudes 
of the capillary wave slopes do not enter into the calculation, and we are interested 
only in the rate of dissipation, the origins of the theoretical curves are of no conse- 
quence. The curves in the figure are placed at  a location most suitable for comparison 
with the experimental data. The agreement between theory and experiment indicates 
that it is a good assumption that eapilIary waves dissipate as free waves after their 
generation. 

5. Conclusion 
We have performed a set of repeatable experiments on the generation of high 

frequency capillary waves by steep gravity waves. The capillary waves were resolved 
with a laser optical slope gauge which has a frequency response of up to 700 Hz and a 
spatial resolution of less than 0-2 mm. Quantitative information on the capillary waves 
was obtained, and the data compared with the theory of Longuet-Higgins (1963). 
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It is found that most of the assumptions used by Longuet-Higgins are satisfied by the 
experimental conditions, and that the frequencies of the capillary waves and their 
dissipation rate once generated are well predicted. However, the relation between the 
capillary wave slope and the crest curvature of the underlying gravity wave predicted 
by the theory cannot be verified experimentally. The main cause of the discrepancy 
appears to be the fact that the theory is based on the knowledgeof anidealizedquantity, 
namely the crest curvature of the gravity wave in the absence of surface tension, 
a quantity which cannot be measured in an experiment. 

A recent study by Ferguson et al. (1978) using a model equation to examine the 
effects of unsteadiness and viscosity on capillary wave generation by steep gravity 
wave suggests that viscous dissipation may affect the generation process in a more 
complicated way than that assumed by Longuet-Higgins. Whether or not their 
findings can be related to the discrepancy between theory and experiment observed 
in this paper must be determined by a more comprehensive theoretical and experi- 
mental study. 

The authors are grateful to Dr Richard Gasparovic for numerous stimulating and 
fruitful discussions. This work was supported by Navy Prime Contract no. 
0001 7-724-4401 and APL/JHU subcontract no. 600093. 
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